Unveiling Linguistics with SpaCy
1 min readOct 29, 2023
In the world of language analysis, SpaCy allows us to dissect the linguistic features. Let’s explore some texts using SpaCy’s capabilities.
!pip install spacy
!python -m spacy download en_core_web_sm
import spacy
# Load the English language model in SpaCy
nlp = spacy.load('en_core_web_sm')
# Texts
text_1 = "Salim, a proficient programmer, designs innovative algorithms and develops software solutions, streamlining complex processes for tech companies."
text_2 = "Saska, a cybersecurity expert, meticulously fortifies networks, ensuring data integrity and safeguarding against cyber threats for large corporations."
# Process Text 1 and Text 2
doc_1 = nlp(text_1)
doc_2 = nlp(text_2)
# Function to display semantic analysis results
def display_analysis(doc):
print("Tokenization & Part-of-Speech Tagging:")
for token in doc:
print(f"Token: {token.text}, POS: {token.pos_}")
print("\nNamed Entity Recognition (NER):")
for ent in doc.ents:
print(f"Entity: {ent.text}, Label: {ent.label_}")
# Analyzing Text 1
print("Analysis of Text 1:")
display_analysis(doc_1)
print("\n----------------\n")
# Analyzing Text 2
print("Analysis of Text 2:")
display_analysis(doc_2)
This concise piece provides a snippet of code, analysis insights, and a brief conclusion on how SpaCy helps uncover the distinct linguistic traits of texts.